Problemas del primer capítulo de Álgebra Local

Pedro Sancho de Salas

2003

Problemas

1. Si I es un conjunto filtrante creciente e $i \in I$ es máximo, probar que $\lim_{i \in I} M_i = M_i$.

Resolución:

Denotemos $\phi_{rs}\colon M_r\to M_s$ los morfismos naturales y por $\phi_r=\phi_{ri}$. Dada el conjunto de morfismos $\{f_s\colon M_s\to N\mid f_r=f_s\circ\phi_{rs}, \text{ para }s\geq r\}_{s\in I}$ existe un único morfismo, explícitamente f_i , de modo que $f_s=f_i\circ\phi_s=f_i\circ\phi_{rs}$, para todo $s\in I$. Luego $\lim_{s\to I}M_j=M_i$..

2. Demostrar que todo módulo es el límite inductivo de sus submódulos finito generados.

Resolución:

Tenemos las inclusiones obvias de los submódulos finito generados $M_i \subseteq M$ en M. Dados morfismos $f_i \colon M_i \to N$, de modo que $f_i = f_{j|M_i}$ si $M_i \subseteq M_j$, existe un único morfismo $f \colon M \to N$, de modo que $f_{|M_i|} = f_i$:

Dado $m \in M$, denotemos $M_m = \langle m \rangle \subseteq M$ y definamos $f(m) := f_m(m)$. Tenemos que f es un morfismo de A-módulos. En efecto, dados $m_1, m_2 \in M$, denotemos $M_{12} = \langle m_1, m_2 \rangle$. Dado $a_1m_1 + a_2m_2 \in M$, tenemos que $\langle a_1m_1 + a_2m_2 \rangle, M_{m_1}, M_{m_2} \subseteq M_{12}$ y

$$f(a_1m_1 + a_2m_2) := f_{a_1m_1 + a_2m_2}(a_1m_1 + a_2m_2) = f_{12}(a_1m_1 + a_2m_2)$$

= $a_1f_{12}(m_1) + a_2f_{12}(m_2) = a_1f_{m_1}(m_1) + a_2f_{m_2}(m_2) =: a_1f(m_1) + a_2f(m_2)$

Veamos que $f_{|M_i}=f_i$. Dado $m\in M_i$, tenemos que $f_i(m)=f_m(m)=f(m)$.

Veamos la unicidad de f. Dado $g: M \to N$, tal que $g_{|M_i} = f_i$, tendremos que $g(m) = f_m(m) = f(m)$, para todo $m \in M$.

Hagamos el problema de otro modo. Sabemos que $\lim_{\stackrel{\longrightarrow}{i}} M_i = (\coprod_i M_i)/\sim$. Definamos

$$f: (\coprod_{i} M_{i})/\sim \to M, \ f(\bar{m}_{i}) := m_{i}$$

que está bien definido, porque $\bar{m}_i = \bar{m}_j$ si m_i y m_j son iguales en un submódulo finito generado de M que contenga a M_i y M_j , es decir, $m_i = m_j$ en M. El morfismo f es epiyectivo porque dado $m \in M$, tenemos que $m \in \langle m \rangle$ y $f(\bar{m}) = m$. El morfismo f es claramente inyectivo.

3. Probar que todo anillo es límite inductivo de Z-álgebras de tipo finito. Probar que todo anillo es límite inductivo de subanillos noetherianos.

Resolución:

Tenemos las inclusiones obvias de las \mathbb{Z} -álgebras finito generadas $A_i \subseteq A$ en A. Dados morfismos $f_i \colon A_i \to B$, de modo que $f_i = f_{j|A_i}$ si $A_i \subseteq A_j$, existe un único morfismo $f \colon A \to B$, de modo que $f_{|A_i|} = f_i$:

Dado $a \in A$, denotemos $A_a = \mathbb{Z}[a] \subseteq A$ y definamos $f(a) := f_a(a)$. Tenemos que f es un morfismo de \mathbb{Z} -álgebras. En efecto, dados $a_1, a_2 \in M$, denotemos $A_{12} = \mathbb{Z}[a_1, a_2]$. Dado $n_1a_1 + n_2a_2 \in A$, tenemos que $\mathbb{Z}[n_1a_1 + n_2a_2], A_{a_1}, A_{a_2} \subseteq A_{12}$ y

$$f(n_1a_1 + n_2a_2) := f_{n_1a_1 + n_2a_2}(n_1a_1 + n_2a_2) = f_{12}(n_1a_1 + n_2a_2)$$

= $n_1f_{12}(a_1) + n_2f_{12}(a_2) = n_1f_{a_1}(a_1) + n_2f_{a_2}(a_2) =: n_1f(a_1) + n_2f(a_2)$

De igual modo procedemos con la operación producto.

Veamos que $f_{|A_i} = f_i$. Dado $a \in A_i$, tenemos que $f_i(a) = f_a(a) = f(a)$.

Veamos la unicidad de f. Dado $g: A \to B$, tal que $g_{|A_i} = f_i$, tendremos que $g(a) = f_a(a) = f(a)$, para todo $a \in A$.

Por último, como las \mathbb{Z} -álgebras de tipo finito son noetherianas, todo anillo es límite inductivo de anillos noetherianos.

4. Sea M un A-módulo de presentación finita. Probar $\operatorname{Hom}_A(M, \lim_{\stackrel{\rightarrow}{n}} N_n) = \lim_{\stackrel{\rightarrow}{n}} \operatorname{Hom}_A(M, N_n)$.

Resolución:

Como $\operatorname{Hom}_A(A, M) = M$ entonces

$$\operatorname{Hom}_A(A, \lim_{\stackrel{\longrightarrow}{n}} N_n) = \lim_{\stackrel{\longrightarrow}{n}} N_n = \lim_{\stackrel{\longrightarrow}{n}} \operatorname{Hom}_A(A, N_n)$$

Además como el límite inductivo conmuta con sumas directas, la suma directa de un número finito de sumandos coincide con el producto directo y $\operatorname{Hom}_A(-,R)$ transforma suma directas en producto directos, tenemos que

$$\operatorname{Hom}_A(A^m, \lim_{\stackrel{\to}{n}} N_n) = \lim_{\stackrel{\to}{n}} \operatorname{Hom}_A(A^m, N_n)$$

Consideremos una sucesión exacta $A^r \to A^s \to M \to 0$. Recordemos que el funtor $\operatorname{Hom}_A(-,R)$ es exacto por la izquierda y \lim_{\longrightarrow} es un funtor exacto. Tenemos las sucesiones de filas exactas

$$0 \longrightarrow \frac{\operatorname{Hom}_{A}(M, \lim_{\stackrel{\longrightarrow}{n}} N_{n})}{\stackrel{\longrightarrow}{n}} \longrightarrow \frac{\operatorname{Hom}_{A}(A^{s}, \lim_{\stackrel{\longrightarrow}{n}} N_{n})}{\stackrel{\longrightarrow}{n}} \longrightarrow \frac{\operatorname{Hom}_{A}(A^{r}, \lim_{\stackrel{\longrightarrow}{n}} N_{n})}{\stackrel{\longrightarrow}{n}}$$

$$0 \longrightarrow \lim_{\stackrel{\longrightarrow}{n}} \operatorname{Hom}_{A}(M, N_{n}) \longrightarrow \lim_{\stackrel{\longrightarrow}{n}} \operatorname{Hom}_{A}(A^{s}, N_{n}) \longrightarrow \lim_{\stackrel{\longrightarrow}{n}} \operatorname{Hom}_{A}(A^{r}, N_{n})$$

Luego,

$$\operatorname{Hom}_A(M, \lim_{\stackrel{\longrightarrow}{n}} N_n) = \lim_{\stackrel{\longrightarrow}{n}} \operatorname{Hom}_A(M, N_n)$$

5. Sea A un anillo noetheriano, $a \in A$ y M un A-módulo. Probar que $\lim_{\longrightarrow} \operatorname{Hom}_A((a^n), M) = M_a$.

Resolución:

Sea ϕ_n : $\operatorname{Hom}_A((a^n), M) \to M_a$ el morfismo definido por $\phi_n(g_n) := \frac{g_n(a^n)}{a^n}$, para toda $g_n \in \operatorname{Hom}_A((a^n), M)$. Si $g_m = g_{n|(a^m)}$ entonces

$$\phi_m(g_m) = \frac{g_n(a^m)}{a^m} = \frac{a^{m-n}g_n(a^n)}{a^{m-n}a^n} = \frac{g_n(a^n)}{a^n} = \phi_n(g_n)$$

Por tanto, tenemos un morfismo natural ϕ : $\lim_{\substack{n \\ n}} \operatorname{Hom}_A((a^n), M) \to M_a$. Veamos que ϕ es

inyectivo: si $\phi(\bar{g}_n)=0$ entonces $\frac{g_n(a^n)}{a^n}=0$, luego existe un a^m de modo que $0=a^m\cdot g_n(a_n)=g_n(a^{m+n})=g_{m+n}(a^{m+n})$ y $0=\bar{g}_{m+n}=\bar{g}_n$. Veamos que ϕ es epiyectivo: Sea I el núcleo del morfismo de localización $A\to A_a$. Tenemos que $I_a=0$ luego existe un i tal que $a^iI=0$. Es decir, dado $b\in A$, si $a^nb=0$ para algún $n\in \mathbb{N}$, entonces $a^ib=0$. Dado $\frac{m}{a^n}$, consideremos el elemento $\frac{a^im}{a^{n+i}}$. El morfismo $g_{n+i}\colon (a^{n+i})\to M$, definido por $b\cdot a^{n+i}\mapsto b\cdot a^i\cdot m$ está bien definido y $\phi(\bar{g}_{n+i})=\frac{m}{a^n}$.

6. Demostrar que el límite inductivo de módulos planos es plano.

Resolución:

Sea $\{M_i\}$ un sistema inductivo de módulos planos y $N\hookrightarrow N'$ un morfismo inyectivo de A-módulos. Entonces $N\otimes_A M_i\hookrightarrow N'\otimes_A M_i$ es un morfismo inyectivo. Como la toma de límites inductivos es exacta, $\lim_{\stackrel{\longrightarrow}{i}}(N\otimes_A M_i)\hookrightarrow \lim_{\stackrel{\longrightarrow}{i}}(N'\otimes_A M_i)$ es inyectivo. Como el límite inductivo conmuta con productos tensoriales, el morfismo $N\otimes_A \lim_{\stackrel{\longrightarrow}{i}} M_i\hookrightarrow N'\otimes_A \lim_{\stackrel{\longrightarrow}{i}} M_i$ es inyectivo. Hemos concluido que $\lim M_i$ es plano.

7. Probar que un Z-módulo es libre de torsión si y sólo si es un Z-módulo plano.

Resolución:

Si M es libre de torsión entonces todo submódulo suyo también, luego M es límite inductivo de \mathbb{Z} -módulos finito generados libres de torsión. Los \mathbb{Z} -módulos finito generados libres de torsión son libres, luego planos. Por tanto, M es límite inductivo de submódulos planos, luego es plano.

Sea M un \mathbb{Z} -módulo plano. Dado $0 \neq n \in \mathbb{Z}$, consideremos el morfismo inyectivo $\mathbb{Z} \stackrel{n\cdot}{\hookrightarrow} \mathbb{Z}$, $m \mapsto nm$. Tensorializando $\otimes_{\mathbb{Z}} M$ obtenemos el morfismo inyectivo $M \stackrel{n\cdot}{\hookrightarrow} M$, $m \mapsto nm$, luego M es libre de torsión.

8. Se
a $x\in\operatorname{Spec} A$ y M un A-m'odulo. Demostrar que
 $M_x=\lim_{\stackrel{\longrightarrow}{\{x\in U_a\}}}M_a.$

Resolución:

Si $x \in U_a$, entonces $a \in A - \mathfrak{p}_x$, por tanto tenemos morfismos $M_a \to M_x$, que definen un morfismo ϕ : $\lim_{\substack{\longrightarrow \\ \{x \in U_a\}}} M_a \to M_x$. El morfismo ϕ es epiyectivo: Dado $\frac{m}{s} \in M_x$, tenemos que

 $s \in A - \mathfrak{p}_x$, es decir, $x \in U_s$ y $\phi(\overline{\frac{m}{s}}) = \frac{m}{s}$. El morfismo ϕ es inyectivo: Si $\phi(\overline{\frac{m}{a}}) = \frac{m}{a} = 0$, entonces existe $a' \in A - \mathfrak{p}_x$ de modo que $a' \cdot m = 0$. Por tanto, si consideramos $s = a \cdot a'$,

tenemos que s no se anula en x, es decir, $x \in U_s$ y $s \cdot m = 0$. En conclusión, $0 = \frac{a'm}{aa'}$ en M_s y $\overline{\frac{m}{a}} = \overline{\frac{a'm}{aa'}} = 0$.

9. Sea x un punto de un espacio topológico X. Sea I el conjunto de entornos abiertos de x, ordenados del siguiente modo: $U \leq V$ si $U \subseteq V$. Sea C(U) las funciones reales continuas sobre U, tenemos un sistema inductivo de anillos $\{C(U)\}$, donde los morfismos $C(U) \to C(V)$ son los de restricción. Probar que $\lim_{x \in U} C(U)$ es el anillo de gérmenes de funciones continuas en x.

Supongamos ahora que X es un espacio separado localmente compacto. Sea $\tilde{C}(U) = C(X)_{S_U}$, donde S_U es el sistema multiplicativo de las funciones que no se anulan en ningún punto de U. Si $U \subseteq V$ consideremos el morfismo natural $\tilde{C}(V) \to \tilde{C}(U)$, $\frac{f}{s} \mapsto \frac{f}{s}$. Probar que $\lim_{s \to 0} \tilde{C}(U)$ es el $\lim_{s \to 0} \tilde{C}(U)$

anillo de gérmenes de funciones continuas en x.

Resolución:

Denotemos por $C_{X,x}$ el anillo de gérmenes en x de funciones continuas. Es decir, $C_{X,x} = (\coprod_{x \in U} C(U))/\sim$, donde dadas $f \in C(U)$ y $g \in C(U')$, decimos que $f \sim g$ si coinciden en un entorno de x. Igual que en la teoría de módulos (y conjuntos) , resulta que $\lim_{x \in U} C(U) = C_{X,x}$.

Por la propiedad universal de la localización, los morfismos $C(X) \to C_{X,x}$, $f \mapsto \bar{f}$, factorizan a través de $C(X)_{S_U}$. Tenemos, pues, un morfismo $\lim_{\substack{\to \\ x \in U}} \tilde{C}(U) \to C_{X,x}$. Veamos que es epiyectivo:

dado un germen de función \bar{f} en $x, f \in C(U)$, sea $K \subset U$ un entorno compacto de x y $h \in C(X)$ que se anule en X-U y sea 1 en K. Podemos entender $h \cdot f$ como una función en X. Luego $\frac{f \cdot h}{h} \in \tilde{C}(U)$ y se aplica en \bar{f} . Veamos que es inyectivo: Dado $\frac{f}{s} \in \tilde{C}(U)$, si $\overline{f \cdot s^{-1}} = 0$ entonces $f \cdot s^{-1}$ es nula en un entorno $V \subset U$ de x, luego f es nula en el entorno V. Sea $K \subset V$ un entorno compacto y h una función que sea nula en X-V e igual a 1 sobre K. Sea W el abierto donde h no es nula, entonces $\frac{f}{s} = 0 \in \tilde{C}(W)$, porque hf = 0. Por tanto, $\overline{f} = 0$.

10. Sea $N_0 \supseteq N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n \supseteq \cdots$ una sucesión decreciente de A-submódulos de N_0 . Probar que $\lim_{\stackrel{\leftarrow}{n}} N_n = \bigcap_n N_n$.

Resolución:

Tenemos inclusiones obvias $\phi_n : \bigcap_n N_n \hookrightarrow N_i$. Dado un conjunto de morfismos $\{f_i : M \to N_i\}_{i \in \mathbb{N}}$, tales que $f_j(m) = f_i(m) \in N_i \subseteq N_j$, para todo $i \leq j$, es obvio que las f_i valoran en $\bigcap_n N_n$, y que tenemos un único morfismo $f : M \to \bigcap_n N_n$, $f(m) := f_i(m)$ (para todo i), de modo que $f_i = \phi_i \circ f$.

11. Sea I un conjunto filtrante decreciente y $J \subseteq I$ un subconjunto con la propiedad de que dado $i \in I$ existe $j \in J$ tal que $j \le i$. Sea $\{M_i\}_{i \in I}$ un sistema proyectivo de objetos. Probar que $\lim_{i \in I} M_i = \lim_{j \in J} M_j$.

Resolución:

Dado un conjunto de morfismos $\{f_i \colon N \to M_i\}_{i \in I}$ tales que $f_r = \phi_{sr} \circ f_s$, para $s \leq r$, en particular tenemos el conjunto $\{f_j \colon N \to M_j\}_{j \in J}$.

Recíprocamente, consideremos un conjunto de morfismos $\{f_j\colon N\to M_j\}_{j\in J}$ tales que $f_r=\phi_{sr}\circ f_s$. Dado $i\in I$, definamos $f_i:=\phi_{ji}\circ f_j$, donde $j\in J$ y es cualquiera con la condición $j\le i$. La definición de f_i no depende del j considerado: pues dados dos j,j' sea $j''\le j,j'$, entonces $\phi_{ji}\circ f_j=\phi_{ji}\circ\phi_{j''j}\circ f_{j''}=\phi_{j''i}\circ f_{j''}=\ldots=\phi_{j'i}\circ f_{j'}$. Además dados $i,i'\in I$, tales que $i\le i'$ se cumple que $f_{i'}=\phi_{ii'}\circ f_i$: sea $j\le i,i'$, tenemos que $f_{i'}=\phi_{ji'}\circ f_j=\phi_{ii'}\circ f_j=\phi_{ii'}\circ f_i$. Tenemos, pues, un conjunto de morfismos $\{f_i\colon N\to M_i\}_{i\in I}$ tales que $f_r=\phi_{sr}\circ f_s$, para $s\le r$.

Ambas asignaciones son inversas entre sí y por tanto $\lim_{\substack{\leftarrow \\ i \in I}} M_i = \lim_{\substack{\leftarrow \\ j \in J}} M_j$, porque ambos represen-

tan al mismo funtor.

12. Sea E un espacio vectorial. Probar $\lim_{\substack{\longleftarrow \\ \operatorname{codim} E' < \infty}} E/E' = E^{**}.$

Resolución:

El morfismo de paso al cociente $E \to E/E'$, define el morfismo $E^{**} \to (E/E')^{**} = E/E'$. Morfismos que definen un morfismo $E^{**} \to \lim_{\leftarrow \text{codim } E' < \infty} E/E'$. Veamos que es isomorfismo.

Sea $\{w_i\}_{i\in I}$ una base de E^* y $E_i=\operatorname{Ker} w_i$. Veamos que la composición de los morfismos naturales $\lim_{\substack{\longleftarrow\\\operatorname{codim} E'<\infty}}E/E' \hookrightarrow \prod_i E/E_i$ es un isomorfismo.

Dado un subespacio $E' \subset E$ de codimensión finita, tenemos que E'° es un subespacio de dimensión finita de E^* , que estará contenido en el subespacio generado por un número finito de 1-formas lineales, $\langle w_{i_1}, \dots, w_{i_n} \rangle$. Luego, $\bigcap_j E_{i_j} \subseteq E'$ y el morfismo natural $E/E' \to \prod_j E/E_{i_j}$

es inyectivo. Esto implica que el morfismo natural $\lim_{\substack{\longleftarrow \\ \text{codim } E' < \infty}} E/E' \to \prod_i E/E_i$ es inyectivo y epivectivo.

Por último, escribamos $\langle \bar{e}_i \rangle = E/E_i$, el morfismo $E^{**} \to \prod_i E/E_i$, $\beta \mapsto (\beta(w_i) \cdot \bar{e}_i)_{i \in I}$ es un isomorfismo.

13. Probar que $\lim_{i \in I} (M_i \times N_i) = (\lim_{i \in I} M_i) \times (\lim_{i \in I} N_i)$, en la categoría de A-módulos, por ejemplo.

Resolución:

$$\begin{split} \operatorname{Hom}_{A}(R, \lim_{\longleftarrow} (M_{i} \times N_{i})) &= \{(f_{i}, g_{i}) \colon R \to M_{i} \times N_{i}, \text{ tales que} \ldots \} \\ &= \{f_{i} \colon R \to M_{i}, \text{ tales que} \ldots \} \times \{g_{i} \colon R \to N_{i}, \text{ tales que} \ldots \} \\ &= \operatorname{Hom}_{A}(N, \lim_{\longleftarrow} M_{i}) \times \operatorname{Hom}_{A}(N, \lim_{\longleftarrow} N_{i}) = \operatorname{Hom}_{A}(N, \lim_{\longleftarrow} M_{i} \times \lim_{\longleftarrow} N_{i}) \\ &= \operatorname{Hom}_{A}(N, \lim_{\longleftarrow} M_{i}) \times \operatorname{Hom}_{A}(N, \lim_{\longleftarrow} N_{i}) = \operatorname{Hom}_{A}(N, \lim_{\longleftarrow} M_{i} \times \lim_{\longleftarrow} N_{i}) \end{split}$$

Luego,
$$\lim_{\stackrel{\leftarrow}{i \in I}} (M_i \times N_i) = (\lim_{\stackrel{\leftarrow}{i \in I}} M_i) \times (\lim_{\stackrel{\leftarrow}{i \in I}} N_i).$$

14. Sea $\cdots \to X_n \to \cdots \to X_2 \to X_1 \to X_0$ una sucesión de aplicaciones entre conjuntos finitos no vacíos. Pruébese que $\lim_{\stackrel{\leftarrow}{i}} X_i$ es no vacío.

Resolución:

Sea $X_i' = \bigcap_{j \geq i} \phi_{ji}(X_i)$. Observemos que X_i' es no vacío: como los conjuntos $\phi_{ji}(X_i)$ son finitos, si su intersección fuera vacía existiría un m, tal que $\emptyset = \bigcap_{j=i}^m \phi_{ji}(X_i) = \phi_{mi}(X_i)$. Observemos también que $\phi_{ij}(X_i') = X_j'$.

Sea pues $x_0 \in X_0'$, $x_1 \in X_1'$ tal que $\phi_{10}(x_1) = x_0$, $x_2 \in X_2'$ tal que $\phi_{21}(x_2) = x_1$, etc. Entonces $(x_i)_i \in \lim_{\leftarrow i} X_i$, y éste es no vacío.

15. Sea $p(x) \in \mathbb{Z}[x]$ y $p \in \mathbb{Z}$. Probar que la condición necesaria y suficiente para que p(x) tenga una raíz en $\hat{\mathbb{Z}}_p$ es que tenga alguna raíz en cada $\mathbb{Z}/p^n\mathbb{Z}$, para todo n > 0.

Resolución:

Sea $X_i \subseteq \mathbb{Z}/p^i\mathbb{Z}$ las raíces de p(x) en $\mathbb{Z}/p^i\mathbb{Z}$. Los morfismos de paso al cociente $\mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ para $n \ge m$, como todo morfismo de anillos, aplican raíces de p(x) en raíces de p(x). Por la misma razón las raíces de p(x) en $\hat{\mathbb{Z}}_p$ se proyectan, por la proyección $\hat{\mathbb{Z}}_p \to \mathbb{Z}/p^n\mathbb{Z}$, en raíces de p(x) en $\mathbb{Z}/p^n\mathbb{Z}$.

Es fácil observar ya, que las raíces de p(x) en $\hat{\mathbb{Z}}_p$ coinciden con $\lim_{\stackrel{\leftarrow}{i}} X_i$. Por el problema anterior, este conjunto es no vacío si y sólo si todos los X_i son no vacíos.

16. Probar que Spec $(\lim_{\stackrel{\longrightarrow}{i}} A_i) = \lim_{\stackrel{\longleftarrow}{i}} \operatorname{Spec} A_i$. Probar que si $A \hookrightarrow B$ es un morfismo entero (es decir, B es límite inductivo de subálgebras finitas sobre A) entonces la aplicación $\operatorname{Spec} B \to \operatorname{Spec} A$ es epiyectiva $y \dim B = \dim A$.

Resolución:

Denotemos por $f_{ij}\colon A_i\to A_j,\ f_i\colon A_i\to \lim_{\stackrel{\longrightarrow}{n}}A_n$ los morfismos implícitamente dados. El conjunto $\{\operatorname{Spec} A_i,f_{ij}^*\}$ forma un sistema proyectivo de espacios topológicos. Por la definición de sistema proyectivo, los morfismos $f_i^*\colon\operatorname{Spec}\lim_{\stackrel{\longrightarrow}{n}}A_n\to\operatorname{Spec} A_i$ definen una aplicación continua $f^*\colon\operatorname{Spec}(\lim_{\stackrel{\longrightarrow}{i}}A_i)\to \lim_{\stackrel{\longleftarrow}{i}}\operatorname{Spec} A_i$. Veamos que es epiyectiva: Dado $(x_i)\in \lim_{\stackrel{\longleftarrow}{i}}\operatorname{Spec} A_i$, es fácil de comprobar que el ideal $\mathfrak{p}_x:=\bigcup_i f_i(\mathfrak{p}_{x_i})\subseteq \lim_{\stackrel{\longrightarrow}{i}}A_i$ es un ideal primo de $\lim_{\stackrel{\longrightarrow}{i}}A_i$ y que $f_i^*(x)=x_i$, luego $f^*(x)=(x_i)$. Además, dado un ideal primo $\mathfrak{p}_x\subset \lim_{\stackrel{\longrightarrow}{i}}A_i$ se cumple que $\mathfrak{p}_x=\bigcup_i f_i(f_i^{-1}(\mathfrak{p}_x))$ lo que prueba la inyectividad de la aplicación.

En general, dado un ideal $I \subseteq \lim_{\stackrel{\longrightarrow}{i}} A_i$, se tiene que $I = \bigcup_i f_i(f_i^{-1}(I))$.

Falta ver que es un homeomorfismo. La topología de un límite proyectivo de espacios topológicos $\lim_{\stackrel{\leftarrow}{i}} X_i$ es la inicial de la inclusión $\lim_{\stackrel{\leftarrow}{i}} X_i \subseteq \prod_i X_i$ (o equivalentemente la inicial de los morfismos $\lim_{\stackrel{\leftarrow}{i}} X_j \to X_i$). Dado un cerrado $C = (I)_0 \subseteq \operatorname{Spec} \lim_{\stackrel{\rightarrow}{n}} A_n$, tenemos que su imagen en $\lim_{\stackrel{\leftarrow}{i}} \operatorname{Spec} A_i$ es la intersección $\prod_i (I_i)_0 \cap \lim_{\stackrel{\leftarrow}{i}} \operatorname{Spec} A_i$, donde $I_i = f_i^{-1}(I)$.

Demostremos la segunda parte del problema. B es el límite inductivo de sus A-subálgebras A_i finitas. Los morfismos $A_i \hookrightarrow A_j$ son finitos, luego en espectros son epiyectivos. Además, $\operatorname{Spec} B = \operatorname{Spec} \lim_{i \to \infty} A_i = \lim_{i \to \infty} \operatorname{Spec} A_i$. Como el límite proyectivo de un sistema proyectivo de

epimorfismos de anillos se epiyecta en cada anillo del sistema proyectivo, tenemos que Spec $B \to \operatorname{Spec} A$ es epiyectivo. Dada una cadena de cerrados cerrados irreducibles $(\mathfrak{p}_1)_0 \subset \cdots \subset (\mathfrak{p}_n)_0 \subset \operatorname{Spec} B$ (\mathfrak{p}_j ideales primos), como hemos dicho ya $\mathfrak{p}_j = \bigcup (\mathfrak{p}_j \cap A_i)$. Para cada j debe existir un índice k_j , de modo que $\mathfrak{p}_j \cap A_{k_j} \subset \mathfrak{p}_{j+1} \cap A_{k_j}$. Si k es tal que $A_{k_j} \subset A_k$ para todo j, tenemos que $\mathfrak{p}_j \cap A_k \subset \mathfrak{p}_{j+1} \cap A_k$ para todo j, y obtenemos una cadena de cerrados irreducibles de longitud n en Spec A_k . Ahora bien, sabemos que dim $A_k = \dim A$, luego dim $B \leq \dim A$. Recíprocamente, dada una cadena de ideales primos $\mathfrak{p}_{10} \subset \cdots \subset \mathfrak{p}_{n0}$ de A se puede levantar a una cadena de ideales primos de B, $\mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n$, de modo que $\mathfrak{p}_i \cap A = \mathfrak{p}_{i0}$: Si tenemos una cadena de A-subálgebras de B, $A \subset A_1 \subset \cdots \subset A_m \subset \cdots$ y en cada A_i cadenas de ideales primos $\mathfrak{p}_{1i} \subset \cdots \subset \mathfrak{p}_{ni}$, de modo que $\mathfrak{p}_{ij} \cap A_{j-1} = \mathfrak{p}_{i,j-1}$, entonces tomando límites inductivos tenemos una cadena de ideales primos en $\dim A_m$. Sea pues C, por el Lema de Zorn, una

subálgebra máxima de B sobre la cual podemos levantar la cadena $\mathfrak{p}_{10} \subset \cdots \subset \mathfrak{p}_{n0}$. C = B porque, para todo $b \in B$, $C \hookrightarrow C[b]$ es un morfismo finito y podemos levantar la cadena a C[b], luego $b \in C$ y C = B. En conclusión, dim $B \ge \dim A$.

17. Calcular el inverso de 1 + x en k[[x]]. Probar que el único ideal maximal de k[[x]] es (x) ¿Existe la raíz cuadrada de 1 + x en k[[x]]?

Resolución:

Si dividimos formalmente 1 por 1+x, obtenemos $c(x)=1-x+x^2-x^3+\cdots+(-1)^nx^n+\cdots$. Es fácil de comprobar que $(1+x)\cdot c(x)=1$. Luego c(x) es el inverso de 1+x.

Igualmente, dado a + p(x), $0 \neq a \in k$ y $p(x) \in (x) \subset k[[x]]$. Tenemos que $(a + p(x))^{-1} = a^{-1} - p(x)a^{-2} + \cdots + (-1)^n p(x)^n a^{-n-1} + \cdots \in k[[x]]$.

k[[x]]/(x) = k, luego (x) es un ideal maximal. Por otra parte, todo elemento que no pertenece a (x) es invertible, luego todo ideal, salvo k[[x]], está incluido en (x) y éste es el único ideal maximal.

Nos preguntamos ahora si existe $s(x) = \sum_n a_n x^n \in k[[x]]$ tal que $s(x)^2 = 1 + x$. Tenemos que

$$s(x)^2 = \sum_{n} (\sum_{i+j=n} a_i a_j) x^n$$
. Por tanto, $a_0^2 = 1$, $2a_0 a_1 = 1$, $\sum_{i+j=n} a_i a_j = 0$ para $n > 1$. Sistema que puede resolverse recurrentemente. Luego existe $\sqrt[2]{1+x}$.

18. Sea I un ideal de un anillo noetheriano A, probar que

$$\operatorname{Spec}_{\max} \hat{A} = \operatorname{Spec}_{\max}(A/I)$$

Resolución:

Sea \mathfrak{m} un ideal maximal de \hat{A} . Si \mathfrak{m} no contiene a I, entonces $I \cdot \hat{A} + \mathfrak{m} = \hat{A}$, luego existen $i \in I \cdot \hat{A}$ y $m \in \mathfrak{m}$ de modo que i + m = 1. Por tanto, m = 1 - i. Ahora bien, $\sum_{n} i^{n} \in \hat{A} = \hat{A}$ es inverso de m, luego $\mathfrak{m} = \hat{A}$ y llegamos a contradicción.

En conclusión, $\operatorname{Spec}_{\max} \hat{A} = \operatorname{Spec}_{\max} \hat{A}/I = \operatorname{Spec}_{\max} A/I$.

- 19. Sea $x \in \operatorname{Spec} A$ un punto cerrado. Probar
 - (a) El completado es un concepto local: El completado \mathfrak{m}_x -ádico de A coincide con el completado $\mathfrak{m}_x A_x$ -ádico de A_x .
 - (b) El cono tangente es un concepto local: $G_{\mathfrak{m}_x}A = G_{\mathfrak{m}_x A_x}A_x$.

Resolución:

(a)
$$\hat{A}_x = \lim_{\stackrel{\leftarrow}{n}} A_x / \mathfrak{m}_x^n A_x = \lim_{\stackrel{\leftarrow}{n}} (A/\mathfrak{m}_x^n)_x = \lim_{\stackrel{\leftarrow}{n}} (A/\mathfrak{m}_x^n) = \hat{A}.$$

(b)
$$G_{\mathfrak{m}_x A_x} A_x = \bigoplus_n \mathfrak{m}_x^n A_x / \mathfrak{m}_x^{n+1} A_x = \bigoplus_n (\mathfrak{m}_x^n / \mathfrak{m}_x^{n+1})_x = \bigoplus_n (\mathfrak{m}_x^n / \mathfrak{m}_x^{n+1}) = G_{\mathfrak{m}_x} A.$$

- 20. (a) Demostrar que la completación I-ádica de M coincide con la completación I-ádica de M_{1+I} .
 - (b) Probar que $\operatorname{Spec}_{\max} A_{1+I} = \operatorname{Spec}_{\max} A/I$.

Resolución:

(a) Observemos que los elementos de 1 + I son invertibles en A/I^n , porque en un anillo un elemento es invertible si y sólo si no pertenece a ningún ideal primo y

$$(1+i)_0 = \operatorname{Spec} A/(I^n, 1+i) = \operatorname{Spec} A/(I, 1+i) = \operatorname{Spec} A/A = \emptyset$$

Por tanto, $(A/I^n)_{1+I} = A/I^n$ y en general

$$(M/I^{n}M)_{1+I} = M \otimes_{A} A/I^{n} \otimes_{A} A_{1+I} = M \otimes_{A} (A/I^{n})_{1+I} = M \otimes_{A} A/I^{n} = M/I^{n}M$$

Ahora ya,

$$\widehat{M_{1+I}} = \lim_{\stackrel{\leftarrow}{\leftarrow} \atop n} M_{1+I}/I^n M_{1+I} = (M/I^n M)_{1+I} = M/I^n M = \hat{M}$$

(b) Si \mathfrak{m} es un ideal maximal de A_{1+I} y no contiene a I, entonces $\mathfrak{m} + I \cdot A_{1+I} = A_{1+I}$, luego existen $m \in \mathfrak{m}$ y $i \in I \cdot A_{1+I}$, de modo que m+i=1. Por tanto, m=1-i que es invertible en A_{1+I} y llegamos a contradicción. En conclusión,

$$\operatorname{Spec}_{\max} A_{1+I} = \operatorname{Spec}_{\max} A_{1+I} / I \cdot A_{1+I} = \operatorname{Spec}_{\max} A / I$$

21. Supongamos que A es un anillo noetheriano y M es finito generado. Probar que el núcleo del morfismo $M \to \hat{M}$ coincide con el núcleo del morfismo $M \to M_{1+I}$.

Resolución:

I está incluido en el radical de Jacobson de A_{1+I} . Sabemos por el Corolario de Krull que M_{1+I} es I-ádicamente separado, es decir, el morfismo $M_{1+I} \to \widehat{M_{1+I}} = \hat{M}$ es inyectivo.

De la composición de morfismos $M \to M_{1+I} \hookrightarrow \hat{M}$ deducimos que el núcleo del morfismo $M \to \hat{M}$ coincide con el núcleo del morfismo $M \to M_{1+I}$.

22. Sea A un anillo noetheriano íntegro, $I\subset A$ un ideal propio. Probar que A es separado con la topología I-ádica.

Resolución:

El morfismo $A \to A_{1+I}$ es inyectivo por ser A íntegro. Como hemos dicho en el problema anterior, el morfismo $A_{1+I} \to \hat{A}$ es inyectivo. Luego la composición $A \hookrightarrow A_{1+I} \hookrightarrow \hat{A}$ es inyectiva y A es I-ádicamente separado.

23. Sea A un anillo noetheriano. Probar $\bigcap_{x,n} \mathfrak{m}_x^n = 0$.

Resolución:

Completemos por la topología \mathfrak{m}_x -ádica. El morfismo $A_y \to \widehat{A}_y = \widehat{A}$ es inyectivo. Luego, el núcleo del morfismo $A \to \widehat{A}$, que es $\bigcap_n \mathfrak{m}_y^n$, coincide con el núcleo del morfismo $A \to A_y$. Por tanto, el ideal de A, $I = \bigcap_{x,n} \mathfrak{m}_x^n$ es el ideal nulo en A_y , es decir, al localizar en y. I es nulo, pues al localizar en todo punto cerrado es nulo.

24. Sea A un anillo noetheriano y M un A-módulo finito generado. Probar que M=0 si y sólo si sus completaciones en todo punto cerrado de Spec A son nulas.

Resolución:

Si al completar M en x es nulo entonces $0 = \hat{M}/\mathfrak{m}_x \hat{M} = M/\mathfrak{m}_x M = M_x/\mathfrak{m}_x M_x$ y por el Lema de Nakayama $M_x = 0$. Ahora bien si $M_x = 0$ para todo x se concluye que M = 0.

25. Sean B_1 y B_2 dos k-álgebras y $x_1 \in \operatorname{Spec} B_1 = X_1$, $x_2 \in \operatorname{Spec} B_2 = X_2$ dos puntos racionales. Probar que el cono tangente del producto de dos variedades es el producto de los conos tangentes de cada una de ellas

$$C_{(x_1,x_2)}(X_1 \times_k X_2) = C_{x_1} X_1 \times_k C_{x_2} X_2$$

Resolución:

Escribamos $B = B_1 \otimes_k B_2$. Sean $\mathfrak{m}_i \subset B_i$ los ideales maximales de funciones que se anulan en x_i y $\mathfrak{m} = \mathfrak{m}_1 \otimes B_2 + B_1 \otimes \mathfrak{m}_2$. Tenemos que probar que $G_m B = G_{m_1} B_1 \otimes G_{m_2} B_2$. Los morfismos $B_1 \to B_1 \otimes B_2$, $b_1 \to b_1 \otimes 1$; $B_2 \to B_1 \otimes B_2$, $b_2 \to 1 \otimes b_2$ definen los morfismos

Los mornsmos $B_1 \to B_1 \otimes B_2$, $b_1 \to b_1 \otimes 1$; $B_2 \to B_1 \otimes B_2$, $b_2 \to 1 \otimes b_2$ define nos mornsmos $G_{m_1}B_1 \to G_mB$, $G_{m_2}B_2 \to G_mB$ que definen el morfismo natural $G_{m_1}B_1 \otimes G_{m_2}B_2 \xrightarrow{\varphi} G_mB$.

 φ es epiyectivo pues $[G_{m_1}B_1\otimes G_{m_2}B_2]_1 = \mathfrak{m}_1/\mathfrak{m}_1^2 \oplus \mathfrak{m}_2/\mathfrak{m}_2^2 \stackrel{\varphi}{=} \mathfrak{m}/\mathfrak{m}^2$ (es bien conocido que en los espacios tangentes de Zariski es cierta esta igualdad) y G_mB está generado por los elementos de grado 1.

Veamos que φ es inyectivo. Como φ es un morfismo graduado, basta comprobar que si m_n es un elemento de grado n y $\varphi(m_n) = 0$ entonces $m_n = 0$. Sea $m_n \in [G_{m_1}B_1 \otimes G_{m_2}B_2]_n = \bigoplus_{i+j=n} \mathfrak{m}_1^i/\mathfrak{m}_1^{i+1} \otimes \mathfrak{m}_2^j/\mathfrak{m}_2^{j+1}$, con $m_n \in \ker \varphi$, luego $m_n = \sum_{i+j=n} m_{ij}$, con $m_{ij} \in \mathfrak{m}_1^i/\mathfrak{m}_1^{i+1} \otimes \mathfrak{m}_2^j/\mathfrak{m}_2^{j+1}$. Sea

$$\overline{B} = B/(\mathfrak{m}_1^{i+1} \otimes B_2 + B_1 \otimes \mathfrak{m}_2^{j+1}) = B_1/\mathfrak{m}_1^{i+1} \otimes B_2/\mathfrak{m}_2^{j+1}.$$

Sea $\overline{\mathfrak{m}}$ la clase de \mathfrak{m} en \overline{B} . De la igualdad $\mathfrak{m}=\mathfrak{m}_1\otimes B_2+B_1\otimes \mathfrak{m}_2$ tenemos que $\overline{\mathfrak{m}}^n=\mathfrak{m}_1^i/\mathfrak{m}_1^{i+1}\otimes \mathfrak{m}_2^j/\mathfrak{m}_2^{j+1}\subseteq \overline{B}$ y $\overline{\mathfrak{m}}^{n+1}=0$. Por tanto, $\overline{\mathfrak{m}}^n/\overline{\mathfrak{m}}^{n+1}=\mathfrak{m}_1^i/\mathfrak{m}_1^{i+1}\otimes \mathfrak{m}_2^j/\mathfrak{m}_2^{j+1}$. Sea $\overline{\mathfrak{m}}_1$ la clase de \mathfrak{m}_1 en $\overline{B}_1=B_1/\mathfrak{m}_1^{i+1}$. Se cumple que

$$\overline{\mathfrak{m}}_{1}^{r}/\overline{\mathfrak{m}}_{1}^{r+1} = \left\{ \begin{array}{ll} \mathfrak{m}_{1}^{r}/\mathfrak{m}_{1}^{r+1} & \text{si } r \leq i \\ 0 & \text{si } r > i \end{array} \right..$$

Ídem para $\overline{\mathfrak{m}}_2$. Del diagrama conmutativo

se deduce que si $\varphi_n(\sum_{i+j=n} m_{ij}) = 0$ entonces $m_{ij} = 0$ para todo par de índices i, j.